Decay Solutions and Decay Rate for a Class of Retarded Abtract Semilinear Fractional Evolution Inclusions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rate of Decay for Solutions of Viscoelastic Evolution Equations

In this article we consider a Cauchy problem of a nonlinear viscoelastic equation of order four. Under suitable conditions on the initial data and the relaxation function, we prove polynomial and logarithmic decay of solutions.

متن کامل

Boundary value problems and periodic solutions for semilinear evolution inclusions

We consider boundary value problems for semilinear evolution inclusions. We establish the existence of extremal solutions. Using that result, we show that the evolution inclusion has periodic extremal trajectories. These results are then applied to closed loop control systems. Finally, an example of a semilinear parabolic distributed parameter control system is worked out in detail.

متن کامل

Decay estimates of solutions to the IBq equation

‎In this paper we focus on the Cauchy problem for the generalized‎ ‎IBq equation with damped term in $n$-dimensional space‎. ‎We establish the global existence and decay estimates of solution with $L^q(1leq qleq 2)$ initial value‎, ‎provided that the initial value is suitably small‎. ‎Moreover‎, ‎we also show that the solution is asymptotic to the solution $u_L$ to the corresponding linear equa...

متن کامل

Existence of Mild Solutions for Nonlocal Semilinear Fractional Evolution Equations

In this paper, we investigate a class of semilinear fractional evolution equations with nonlocal initial conditions given by (1) ⎧⎨ ⎩ dqu(t) dtq = Au(t)+(Fu)(t), t ∈ I, u(0)+g(u) = u0, where 0 < q< 1 , I is a compact interval. Sufficient conditions for the existence of mild solutions for the equation (1) are derived. The main tools include Laplace transform, Arzela-Ascoli’s Theorem, Schauder’s ...

متن کامل

Decay of mass for fractional evolution equation with memory term

The decay properties of the mass M(t) = ∫ RN u(·, t)dx of the solutions of a fractional diffusion equation with nonlinear memory term is studied. For a suitable class of initial data and a restriction on the diffusion and nonlinear term, we show that the memory term determines the large time asymptotics, precisely, M(t) tends to zero as t→∞. AMS subject classifications: Primary: 35K55; Secondar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2019

ISSN: 1027-5487

DOI: 10.11650/tjm/181101